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ABSTRACT: 

SERRAI ET AL. 

The analysis of biological systems by means of Proton (1H) Magnetic 

Resonance Spectroscopy (MRS) shows a prominent water resonance which 

obscures the small metabolite signals. Preacquisition techniques have been 

successfully used to remove the water resonance and to relatively enhance the 

other component signals. However, these methods may suffer from baseline 

distortion and signal saturation of metabolites close to the water peak. An 

accurate quantification of such components could be compromised. 

The present work consists of the preliminary testing of the Continuous Wavelet 

Transform approach combined with the Data Shift Accumulation (WT-DSA) 

technique as a postacquisition water suppression method. 

A qualitative comparison has been performed between WT-DSA and two 

selected preacquisition water suppression techniques i. e. Presaturation and 

Watergate. The comparison was achieved on a 1H MRS unsuppressed water data 

collected from two different artificial test solutions using a whole body 4T and a 

high resolution narrow bore 1 1.7T MRS systems and based on the degree of water 

suppression, residual baseline distortion and signal saturation. 

The WT-DSA technique appears to be a promising method to remove the 

water component without altering components near the water resonance. 

1. INTRODUCTION: 

The Free Induction Decay (FID) signals acquired in high-resolution or in 
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CONTINUOUS WAVELET TRANSFORM 49 

vivo proton ( H) Magnetic Resonance Spectroscopy (MRS) studies are corrupted 

by the large water resonance, which conceals the dilute metabolite signals. A 

water suppression technique is needed to observe the signals arising from these 

metabolites. The accuracy of data analysis, especially metabolite quantification, 

greatly depends upon the quality and the degree of water suppression. 

Two categories of water suppression methods are used. The first category consists 

of the preacquisition methods [ 1-41 which remove the water magnetization prior to 

data acquisition. These methods may be divided into the four following groups: i) 

methods which avoid the excitation of the water spins [5-71, ii) methods which 

destroy the longitudinal water magnetization using TI differences [8-111, iii) 

methods which destroy the transverse water magnetization [ 12-19], iv) and 

methods based on Tz differences [20-221. 

Most of these preacquisition methods are limited by technical problems 

such as radiation damping, poor selectivity and improper phase of the pulses, as 

well as homogeneties of the RF and Bo fields. Consequently, the obtained 

spectrum may have incomplete solvent suppression, baseline distortion, artifacts 

and saturation of signals close to the water resonance [23]. 

To overcome these technical problems, other preacquisition methods have 

been developed. The Water-PRESS method [24, 251 was proposed to address the 

radiation-damping problem. A combination of soft and hard pulses [26, 271, and 
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50 SERRAI ET AL. 

repetitive use of the selective pulses followed by crusher gradients [28-301 have 

been used for complete destruction of the transverse water magnetization. To 

compensate for the inhomogeneous RF field, adiabatic full passage pulses have 

been proposed [31, 321. These particular pulse sequences increase the quality of 

the obtained spectra, but they may not provide adequate water suppression for 

accurate data analysis. As a consequence, the small metabolites close to the water 

resonance are either strongly saturated or hidden by the remaining large baseline. 

Furthermore, water signal information that may be used as an internal reference in 

some studies [33-351, is lost using these preacquisition methods. 

A second category of water suppression techniques known as 

postacquisition methods has been proposed [36-421. They use different 

mathematical approaches to subtract the water signal component from the MRS 

data. These methods are based on band-pass filtering in the time or frequency 

domains [37, 381, data matrix representation using Singular Value Decomposition 

(SVD) or Toeplitz matrix decomposition [39, 401, or data fitting by means of a 

non-linear least-square method [4 11. The major drawbacks of the postacquisition 

techniques are again the radiation damping which modifies the shape of the water 

component and the dynamic range problem which degrade the signal to noise 

ratio (SNR). 

As a matter of fact, the quality of the resulting spectra using either pre or 

postacquisition techniques may be affected by residual water signal (baseline 

distortion), signal saturation and low SNR. 
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CONTINUOUS WAVELET TRANSFORM 51 

Recently, an iterative approach based on the Continuous Wavelet 

Transform (WT) was proposed for MRS data quantification and removal of the 

dominant solvent peak [43-451. It analyzes the signal by transposing its 

representation from the time domain to the time-scale domain [46,47]. The signal 

components are then extracted, quantified, and subtracted from the raw signal, 

one by one, according to their respective apparent relaxation time (Tz*) values. 

The extraction of the signal components is based on their time duration rather 

than their magnitudes. This method was applied to unsuppressed water FID 

signals as a postacquisition technique to isolate, quantify and remove the water 

resonance while preserving the adjacent metabolite peaks. 

As WT may be used based on different kernels and applied to particular 

signal models (Lorentzian, Gaussian, etc.. .), it is possible to choose these 

parameters according to the solvent component shape. Thus, the effect of the 

radiation damping may be addressed. A combination of WT and Data Shift 

Accumulation (DSA) was applied here to improve the quality of the resulting data 

in terms of baseline correction. The best way to reduce the effect of the inherent 

dynamic range problem (low SNR) is to increase the resolution of the A / D  

converter from 16 bits,used here,to 32 bits. This problem was addressed here by 

Line Broadening (LB) filtering or files averaging. 

Two MRS experiments were considered. The aim of the first experiment 

was to demonstrate the potential usefulness of the WT as a water suppression 

technique, and confirm the previous work [44]. The second experiment was 

designed to qualitatively compare the performance of WT-DSA with two other 
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52 SERRAI ET AL. 

preprocessing techniques: Presaturation [ 191 and Watergate [26]. In both cases, 

the Lorentziansignal model and the Morlet Wavelet have been selected. 

2. MATERIAL AND METHODS: 

Experiment 1 : Unsuppressed water Proton MRS data were collected from a 2.7 L 

spherical phantom. The phantom consisted of 50 mM potassium phosphate 

monobasic (KH2PO4), 56 mM sodium hydroxide (NaOH), 12.5 mM N-acetyl-L- 

aspartic acid (NAA), 10 mM creatine hydrate (Cr), 3 mM choline chloride (Ch), 

7.5 mM myo-inositol (mi), 12.5 mM L-glutamic acid (monosodium salt Glu), 5 

mM DL-lactic acid (lithium salt Lac), and 0.10 % sodium azide. The data were 

acquired at 170 MHz on a 4T scanner whole body system with a 16 bit A/D 

converter (General Electric Medical Systems, Milwaukee, WI), with a slice 

selective spin echo sequence (TE = 288ms, TR = lSsec, 10 mm slice thickness, 

32 accumulations, f 1250 Hz spectral width, and 2048 data points). 

A typical spectrum is shown in Figure la. The time domain data was 

processed by WT using a custom-made program written in IDL (Interactive Data 

Language, IRIX mipseb Ver. 5, Research Systems, Inc.) based on the iterative 

procedure described in [43,45]. 

Experiment 2 : Three sets of high-resolution unsuppressed water proton MRS data 

were collected from a sample containing 90% H20, 10% D20, 2mM sucrose, 

2mM NaNO3, and 0.5 mM trimetyl-silyl-propionate (TSP). The first two data sets 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
3
:
1
7
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



CONTINUOUS WAVELET TRANSFORM 53 

0.6 o.8r I " '  

0.0 
0 200 400 600 800 

Frequency (Hz) 

0.08 

0.06 

0.02 

0.00 
0 200 400 600 800 

Frequency (Hz) 

FIG. 1 

a : Magnified view of the metabolite area of the unsuppressed water spectrum 

shown in the inset. 

b : Spectrum of the metabolite signals obtained after water suppression using 

Wavelet Transform postacquisition method. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
3
:
1
7
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



54 SERRAI ET AL. 

used Watergate and Presaturation water suppression techniques. The data were 

acquired at 500.13 MHz on an a high resolution 11.7T Advance DMXSOO 

Spectrometer with a 16 bit A/D converter (Bruker, Wissembourg, France), with a 

5 psec pulse width, 64 acquisitions, 3500 Hz spectral width, receiver gain 128, 

and 16 K data points. To correctly apply the Watergate gradients, the pulse width 

was set to 5.5 ps. 

The third set consisted of unsuppressed-water data, collected using the 

same conditions as above with a receiver gain equal to 1. The data was processed 

by WT using the same iterative procedure as in the first experiment. 

3. RESULTS: 

Experiment 1: The WT iterative procedure converged after 4 iterations. The 

estimated water chemical shift value was S= 0.00 Hz, validating the method 

because the water peak was on-resonance. The extracted water component was 

then subtracted from the raw signal. In order to reduce the effect of baseline 

distortion, the first 7 points were removed (see Appendix). The metabolite region 

of the resulting spectrum is shown in Figure lb. The result shows that WT 

sufficiently suppress the dominant water signal while the dilute metabolites are 

preserved. 

Experiment 2: The results obtained by Watergate and Presaturation techniques are 

shown in Figures 2 and 3 respectively. For the set processed by WT, the iterative 
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1000 

Sucrose I i 

o> -1000 -2000 -3000 

HZ 

FIG. 2 

Spectrum obtained after using Watergate method. The magnitude of the spectrum 

was divided by the receiver gain (128). The signals close to the water resonance 

are significantly saturated. 

procedure converged after 5 iterations. The estimated values for the chemical shift 

(6) = 0.00 Hz. The extracted water peak was subtracted from the signal. To 

attenuate the baseline effects, the first 54 points were removed from the residue 

(see Appendix), and the corresponding spectrum is shown in Figure 4a. However, 

dropping a large number of points may lead to the elimination of components 

with fast decay (short Tz*). To preserve these components, the number of points 
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1000 0 -1000 -2000 -3000 

Hz 

FIG. 3 

Spectrum obtained after using Presaturation method. The magnitude of the 

spectrum was divided by the receiver gain (128). The spectrum contains large 

water residue and baseline distortion. 

removed should be minimized. The DSA technique [42], which allows the water 

resonance to be reduced in unsuppressed water data, was applied prior to WT 

procedure. This resulted in the spectrum shown in Figure 4a after eliminating only 

the first 10 points. In order to increase the SNR of the previous spectrum classical 

methods (Line Broadening and file averaging) were used and the results are 

shown in Figures 4b and 4c,respectively. 
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4. DISCUSSION AND CONCLUSION: 

57 

The presented results demonstrates the potential ability of the Wavelet 

Transform method to strongly reduce the water signal while preserving the 

metabolite components close to the water resonance. Concerning the tested 

preacquisition techniques, we have seen that Watergate method allows the 

suppression of a large amount of the water resonance with no baseline distortion, 

but significantly saturates the sucrose signals close to the water peak (Fig. 2) .  The 

Presaturation technique better preserves the sucrose signals but does not 

efficiently reduce the water resonance leading to baseline distortion (Fig. 3). The 

WT-DSA method allows us to obtain results similar to those provided by the 

Watergate method (water resonance reduction and baseline elimination) while 

preserving the sucrose components as in the Presaturation method (Fig. 4b, 4c). 

Moreover, as it is a postacquisition method, the problems generally 

encountered by the preacquisition techniques such as imperfections and power 

requirements of the RF fields were avoided. The method can quantify the water 

resonance, which may be used as an internal reference. It could also be used for 

electronic preacquisition suppression by the ERETIC method [48, 491. 

Furthermore, the magnetic coupling between water and metabolites detected in 

brain and muscle may be affected, leading to an underestimation of the metabolite 

concentration when using the preacquisition water suppression techniques [50]. 

The proposed method could avoid the perturbation of the water and preserves the 

total metabolite concentration. 
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FIG. 4 

a : Spectrum after using the DSA-WT method and removal of the first 10 points. 

The signals close to the water resonance are preserved. 

b : Improvement of the SNR by using a line broadening (LB=500 ms). 

c : Improvement of the SNR by averaging 64 data files. 

In order to improve the quality of the spectra in term of SNR, the 

resolution of the A/D converter should be increased by doubling the number of 

digits from 16 to 32 digits. 

APPENDIX Influence of removing initial data points on the quantification of 

MRS parameters. 
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FIG. 4. Continued 
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60 SERRAI ET AL. 

The reduction of the baseline drift is often addressed by the elimination of 

the first data points. In this appendix we investigate the influence of this 

procedure on the parameters of MRS signals. Let s(t) be a FID signal containing 

one component. s(t) is then given by : 

Assume that the portion of s(t) belonging to (0, T] is removed. The resulting 

signal is then: 

sT( t )  = s(t + T) ;  t 2 0 "421 

which is of the form: s, ( t )  = A'e(-f/ri)ei(2na+b) , where A' = AdT2 '  and 

p' = p + 2 imT.  

Therefore, the quantification of the FID signal s(t), after removal of the 

first data points, is equivalent to the quantification of the new FID signal s,(t) 

whose MRS parameters comply with the equations above. It is then possible to 

derive the MRS parameters of s ( t )  from those of sT( t ) .  Hence, the elimination of 

some initial values of the signal theoretically has less influence on the estimated 

MRS parameter values. 

As an example, we generate a synthetic MRS signal containing two 
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CONTINUOUS WAVELET TRANSFORM 61 

components with a sampling frequency normalized to 1. The parameters of the 

first component are : A = 1000 a.u, T2* = 150 ms and 6= 0.5. The parameters of 

the second are A = 1 a.u, T2* = 100 ms and 6= 0.2. Using the iterative procedure 

method [42], the first component is quantified; the estimation of the parameters A, 

T2* and Ggives: 999.39 a.u, 149.794 ms and 0.5000,respectively. 

The quantification of the second component, after subtracting the first one 

from the raw signal and removing the first 10 data points from the residue, leads 

to the following values of the estimated parameters A', T2* and 6 : 0.824878 a.u, 

97.66 ms and 0.199526, respectively. Using the equations above, the derived 

estimated value for A is then equal to 0.91 381 8 a.u. 
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